Analisis Klasifikasi Sinyal EKG Berbasis Wavelet dan Jaringan Syaraf Tiruan

Arif Surtono, Thomas Sri Widodo, Maesadji Tjokronagoro

Abstract


Abstract— ECG signals analysis at first associated to pattern recognition of the ECG signals marphology. Nonetheless the signals marphology varying not only in different patients but also in the same patient. The varying of the ECG marphology has efected difficulties in ECG analysis, particularly for a trainingless medicines. On the other hand the ECG signals contain much noises. Therefore it was require the suitable methods for ECG signals analysis. This research aim are analyzing and classifying of the ECG signals from heart condition of normal, arrhytmia, ventricular tachyarrhytmia, intracardiac atrial fibrillation dan myocard infarction based on wavelet transformation and artificial neural network backpropagation.
The research stages are data preparing, pre-processing, feature extraction, processing and post-processing. The 60/50 Hz noises in ECG signals from power line interference reduced using IIR notch filter with pole-zero placement method. The baseline wander noises reduced using discrete wavelet transform of 11 level decomposition to find frequency component below 0,5 Hz as a noise source.
Based on this work results obtained that average accuracy percentage of the neural network recognized all of the ECG types reached 87,424 %. Highest accuracy percentage of 95,455 % for ventricular tachyarrhytmia and lowest accuracy percentage of 70 % for arrhytmia classification.
Intisari— Analisis sinyal EKG pada mulanya menyangkut pengenalan pola marfologi sinyal EKG. Namun marfologi tersebut selalu berubah, baik pada pasien yang berbeda maupun pada pasien yang sama. Variasi marfologi EKG ini dapat menyulitkan dalam analisis sinyal EKG, khususnya bagi tenaga medis yang kurang terlatih. Apalagi sinyal EKG biasanya mengandung banyak derau. Untuk itu perlu metode lain yang cocok dalam menganalisis sinyal EKG yang merupakan sinyal non-stasioner. Penelitian ini bertujuan untuk menganalisis dan mengklasifikasi sinyal elektrokardiografi (EKG) dari kondisi jantung normal, arrhytmia, ventricular tachyarrhytmia, intracardiac atrial fibrillation dan myocard infarction berbasis transformasi wavelet dan jaringan syaraf tiruan penjalaran balik.
Tahapan penelitian meliputi penyiapan data, pra-pemrosesan, ekstraksi ciri, pemrosesan dan pasca-pemrosesan. Pada tahap pra-pemrosesan, derau 60/50 Hz pada sinyal EKG dari interferensi jaringan listrik direduksi dengan filter takik IIR
metode penempatan pole-zero. Sedangkan derau baseline wander direduksi dengan metode transformasi diskrit 11 tingkat untuk memperoleh komponen frekuensi dibawah 0,5 Hz penyebab derau ini. Ekstraksi ciri EKG menggunakan normalisasi energi rerata dari tiap dekomposisi 6 tingkat menggunakan wavelet Sym8. Jaringan syaraf tiruan penjalaran balik digunakan pada tahap pemrosesan dengan struktur 7 neuron input, 7 neuron lapisan tersembunyi dan 5 neuron lapisan output, untuk klasifikasi sinyal EKG.
Berdasarkan penelitian yang telah dilakukan diperoleh hasil bahwa rerata persentase akurasi jaringan syaraf mengenali semua jenis EKG mencapai 87,424 %. Persentase akurasi terbesar mencapai 95,455 % untuk jenis EKG ventricular tachyarrhytmia dan persentase akurasi terkecil 70 % untuk mengenali jenis EKG arrhytmia.

Full Text:

PDF


DOI: http://dx.doi.org/10.22146/jnteti.v1i3.130

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id