Segmentasi Citra Sel Tunggal Smear Serviks Menggunakan Radiating Component Normalized Generalized GVFS

Nursuci Putri Husain, Chastine Fatichah


Component Normalized Generalized Gradient Vector Flow Snake (CNGGVFS) method is the development of Gradient Vector Flow Snake (GVFS) method as an external force algorithm for active contour (snake) that can be used to get the contour of nucleus and cytoplasm of cervical smear image. However, CNGGVFS using a conventional calculation of edge map such as Sobel can not detect the nucleus area correctly in single cell cervical smear image segmentation. In this study, an external force algorithm in snake that uses Radiating Edge Map (REM) calculation to search the edge map in CNGGVFS, called as Radiating Component Normalized Generalized Gradient Vector Flow Snake (RCNGGVFS), is proposed. RCNGGVFS is used to get the contour of nucleus and cytoplasm of single cervical smear image. There are three main stages in this study, which are: pre-processing, initial segmentation, and contour segmentation. Experiments are conducted on Herlev data-set. The proposed method is compared with other methods in previous research in single cell cervical smear image segmentation. The experiment results show that the proposed method can detect the nucleus area correctly better than Radiating GVFS & Fuzzy C-Means (FCM) and Radiating GVFS & K-means. The average value of accuracy and Zijdenbos similarity index (ZSI) for nucleus segmentation is 95.34% and 88.06%. Then, the average value of accuracy and ZSI for cytoplasm segmentation is 83.48% and 87.16%. The evaluations show the proposed method can be used as a segmentation process of cervical smear image on automatic identification of cervical cancer.

Full Text:



Y.P.Pasrun, C.Fatichah & N.Suciati, "Penggabungan Fitur Bentuk dan Fitur Tekstur yang Invariant terhadap Rotasi untuk Klasifikasi Citra Pap Smear", Jurnal Buana Informatika, vol.7(1), hal.11-20, 2016.

K.A.Abuhasel, C.Fatichah, & A.M.Iliyasu, "A Bi-Stage Technique for Segmenting Cervical Smear Images Using Possibilistic Fuzzy C-Means and Mathematical Morphology", Journal of Medical Imaging and Health Informatics, vol.6 (7), hal.1663-1669, 2016.

H.S.Wu, J.Gil, J.Barbara, “Optimal segmentation of cell images, IEEE Proceedings of Vision”, Image and Signal Processing, vol.145(1), hal.50-56, 1998.

P.Bamford & B.C.Lovell, “A water immersion algorithm for cytological image segmentation”, Proceedings of the APRS Image Segmentation Workshop, Sydney, Australia, hal.75-79, 1996.

K.Li, Z.Lu, W.Liu & J.Yin, “Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake”, Pattern Recognition, vol.45(4), hal.1255-1264, 2012.

C.Xu, & J.L.Prince, “Generalized gradient vector flow external forces for active contours”, Signal Processing Elsivier, vol.71, hal.131-139, 1998.

S.F.Yang-Mao, Y.K.Chan & Y.P Chu, “Edge enhancement nucleus and cytoplast contour detector of cervical smear images”, IEEE Transactions on Systems and Cybernetics, vol.38(2), hal.353–366, 2008.

L.Qin, C.Zhu, Y.Zhao, H.Bai & H.Tian, “Generalized Gradient Vector Flow for Snakes: New Observations, Analysis, and Improvement”, IEEE Transactions on Circuits and Systems for Video Technology, vol.23(5), hal.883-897, 2013.

J.Jantzen & G.Dounias, “Analysis of Papsmear image data”, Proceedings of the Nature-Inspired Smart Information Systems 2nd Annual Symposium NISIS, 2006.

J.Jantzen & G.Dounias, The Pap-Smear Benchmark (2008) [Online], tanggal akses: 12 Mei 2016.

F.Zhao, L.Jiao, & H.Liu, “Fuzzy c-means clustering with non local spatial information for noisy image segmentation”, Frontiers of Computer Science in China, vol.5(1), hal.45–56, 2011.

A.Buades, B.Coll & J.M. Morel, “A non-local algorithm for image denoising”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, hal.60-65, 2005

M.D.E.Susanti, H.Tjandrasa & C.Fatichah, “Segmentasi Nukleus dan Sitoplasma pada Citra Smear Serviks menggunakan Kombinasi Metode Fuzzy C- Means Clustering dan Radiating Gradient Vector Flow Snake”, Tugas Akhir, Institut Teknologi Sepuluh Nopember, Surabaya, 2015.



  • There are currently no refbacks.

Copyright (c) 2017 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305