Sistem Presensi Menggunakan Algoritme Eigenface dengan Deteksi Aksesoris dan Ekspresi Wajah

Romi Wiryadinata, Umi Istiyah, Rian Fahrizal, Priswanto Priswanto, Siswo Wardoyo

Abstract


Attendance is the documentation of presence and activity in institution. A software has been made to monitor the attendance using face recognition. The software uses camera to capture the image and works on any background color. The aim of this paper is to calculate its performance with sensitivity, specificity, and accuracy using Eigenface Algorithm and Principal Component Analysis (PCA) method. Face recognition in this paper is based on Eigenface algorithm, using pixel information from images captured by webcam. The image is represented using PCA method. The software is tested using different expressions and accessories in object’s face. The performance of the software indicates 73.33%sensitivity, 52.17% specificity, and 86.67% accuracy. The successful rate in identifying the face for distance testing is 70%, while successful rate of 85% is achieved for object wearing eyeglasses and veil (jilbab). Furthermore, the successful rate for various expression is 85.33%.

Keywords


Sistem presensi; Deteksi wajah; Eigenface; Principal Component Analysis

Full Text:

PDF

References


A. Fanggidae dan Y. T. Polly, “Sistem Presensi Dosen Menggunakan IMEI dan GPS Smartphone dengan Data Terenkripsi,” Jurnal Nas. Tek. Elektro dan Teknol. Inf., vol. 5, no. 3, pp. 1–8, 2016.

Y. I. Hatmojo, “Implementasi Wavelet Haar dan Jaringan Tiruan Pada Pengenalan Pola Selaput Pelangi Mata,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 3, no. 1, pp. 58–62, 2014.

Sehman, “Penerapan Face Recognition dengan Metode EigenFace pada Intelligent Car Security,” Proc. Seminar Nasional Inovasi dalam Desain dan Teknologi, 2015, pp. 342–348.

H. Al-Fatta, Rekayasa Sistem Pengenalan Wajah. Yogyakarta: Penerbit Andi, 2009.

S. Bayu, A. Hendriawan, and R. Susetyoko, “Penerapan Face Recognition Dengan Metode Eigenface Dalam Intelligent Home Security,” Skripsi S1, Politeknik Elektronika Negeri Surabaya, pp. 1–7, 2009.

R. Wiryadinata, R. Sagita, S. Wardoyo, and Priswanto, “Pengenalan Wajah Pada Sistem Presensi Menggunakan Metode Dynamic Times Wrapping, Principal Componen Analysis, dan Gabor Wavelet”, Jurnal Dinamika. Rekaya, vol. 12, no. 1, pp. 1–8, 2016.

S. Wardoyo, R. Wiryadinata, R. Sagita, “Sistem Presensi Berbasis Algoritma Eigen Face dengan Metode Principal Component Analysis”, Jurnal Setrum, vol. 3, no. 1, pp. 61-68, 2012.

H. Pratikno, “Kontrol Gerakan Objek 3D Augmented Reality Berbasis Titik Fitur Wajah dengan POSIT,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 4, no. 1, pp. 16–24, 2015.

Q. Yuan, W. Gao, and H. Yao, “Robust Frontal Face Detection in Complex Environment,” 16th International Conference on Pattern Recognition, 2002.

R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face Detection in Color Images,” Proc. International Conference on Image Processing, 2001, vol. 1, pp. 1046–1049.

J. Kovac, P. Peer, and F. Solina, “Illumination Independent Color-Based Face Detection,” Proc. The 3rd International Symposium on Image and Signal Processing and Analysis, 2003.

H. a Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 23–38, 1998.

R. Hartanto and M. N. Aji, “Perancangan Awal Antarmuka Gesture Tangan Berbasis Visual,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 1, no. 1, pp. 36–43, 2012.

S. Wasista, B. S. B. D, and S. A. Putra, “Sistem Pengenalan Wajah Pada Mesin Absensi Mahasiswa Menggunakan Metode PCA Dan DTW,” 13th Ind. Electron. Semin. 2011 (IES 2011), vol. 2011, no. Ies, pp. 224–229, 2011.

D. E. Pratiwi and A. Harjoko, “Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis ),” Indones. J. Electron. Instrum. Syst., vol. 3, no. 2, pp. 175–184, 2013.

Murinto, “Pengenalan Wajah Manusia Dengan Metode Principle Component Analysis (PCA),” Jurnal Telkomnika, vol. 5, no. 3, pp. 177–184, 2007.

D. Puspitaningrum, D. K. Sari, and B. Susilo, “Dampak Reduksi Sampel Menggunakan Principal Component Analysis (PCA) Pada Pelatihan Jaringan Saraf Tiruan Terawasi (Studi Kasus: Pengenalan Angka Tulisan Tangan),” Jurnal Pseudocode, vol. 2, no. 1, pp. 83–89, 2014.

F. T. Puri, “Analisis Algoritma Eigenface (Pengenalan Wajah) Pada Aplikasi Kehadiran Pengajaran Dosen,” Skripsi, UIN Syarif Hidayatullah, Jakarta, 2011.

S. K. Singh, D. S. Chauhan, M. Vatsa, and R. Singh, “A robust skin color based face detection algorithm,” Tamkang J. Sci. Eng., vol. 6, no. 4, pp. 227–234, 2003.

Y. Pai, S. Ruan, M. Shie, and Y. Liu, “A Simple and Accurate Color Face Detection Algorithm in Complex Background,” Proc. International Conference on Multimedia and Expo, 2006.




DOI: http://dx.doi.org/10.22146/jnteti.v6i2.319

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id