Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika

Oman Somantri, Mohammad Khambali

Abstract


Classification of short stories category based on age of the reader is still difficult. Therefore, a decision support system to classify the short stories category is needed. Naïve Bayes is one of methods suitable for short stories classification. However, Naïve Bayes has flaws in accuracy level, and needs to be optimized. In this paper, Genetic algorithm is proposed to increase the level of accuracy. In this case, genetic algorithm is used for feature selection. The results show an increase in the level of accuracy produced. The accuracy increases from 78,59% to 84,29%. In conclusion, the application of genetic algorithm on Naïve Bayes in classifying the online short stories category can improve the accuracy.

Keywords


klasifikasi, kategori cerpen, Naive Bayes, algoritme genetika.

Full Text:

PDF

References


Suroto, Apresiasi Sastra Indonesia, Jakarta: Erlangga, 1989.

Pembinaan, Tim Penyusun Kamus Pusat. "Kamus Besar Bahasa Indonesia Online." Balai Pustaka. Depdikbud (2011).

Sumardjo, Jacob dan Saini K.M, Apresiasi Kesusastraan, Jakarta: PT.Gramedia, 1988.

Somantri, O. and Wiyono, S., “Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM)”, Scientific Journal of Informatics, 3(1), pp.34-45,2016.

Fikri, R., Arnia, F. and Muharar, R., “Pengenalan Karakter Tulisan Tangan Jawi Menggunakan Metode New Relative Context dan SVM”, Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 5(3), 2016.

Putranto, H.A., Setyawati, O. and Wijono, W., “Pengaruh Phrase Detection dengan POS-Tagger terhadap Akurasi Klasifikasi Sentimen menggunakan SVM”, Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 5(4), 2016.

Chen, J., Huang, H., Tian, S., & Qu, Y., “Feature selection for text classification with Naïve Bayes”, Expert Systems with Applications, 36, 5432–5435, 2009.

Zhang, & Gao, F. “An Improvement to NB for Text Classification”, Procedia Engineering, 15, 2160–2164, 2011.

Wang, S., Li, D., Zhao, L., & Zhang, J., “Sample cutting method for imbalanced text sentiment classification based on BRC”, Knowledge-Based Systems, 37, 451–461, 2013.

Xu, T., Peng, Q., & Cheng, Y., “Identifying the semantic orientation of terms using S-HAL for sentiment analysis”. Knowledge-Based Systems, 35, 279–289. doi:10.1016/j.knosys.2012.04.011, 2012.

Zhang, L., Jiang, L., & Li, C., “A new feature selection approach to naive bayes text classifiers”, International Journal of Pattern Recognition614 and Artificial Intelligence, 30(2), 1650003:1–1650003:17, 2016.

Uysal, A. K., & Gunal, S., “Text classification using genetic algorithm oriented latent semantic features”, Expert Systems with Applications, 41(13), 5938–5947, 2014.

Tsai, C-F., Chen, Z-Y., & Ke, S-W., “Evolutionary instance selection for text classification”, Journal of Systems and Software, 90, 104–113, 2014.

Lei, S. “A feature selection method based on information gain and genetic algorithm”, Proceedings of international conference on computer science and electronics engineering (ICCSEE), (pp. 355–358), 2012.

Fang, Y., Chen, K., & Luo, C., “The algorithm research of genetic algorithm combining with text feature selection method”, Journal of Computational Science and Engineering, 1(1), 9–13, 2012.

Ghareb, Abdullah Saeed, Azuraliza Abu Bakar, and Abdul Razak Hamdan. "Hybrid feature selection based on enhanced genetic algorithm for text categorization." Expert Systems with Applications 49:31-47, 2016.

McCallum, A. & Nigam, K., “A comparison of event models for naive Bayes text classification”, AAAI-98 workshop on learning for text categorization, 1998.

Haupt, Randy L., and Sue Ellen Haupt. "The binary genetic algorithm." Practical Genetic Algorithms, Second Edition: 27-50, 2004.

J.H. Holland, “Adaptation in natural and artificial systems”, Ann Arbor : The University of Michigan Press, 1975.




DOI: http://dx.doi.org/10.22146/jnteti.v6i3.332

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id