Peningkatan Akurasi Estimasi Usaha dan Biaya COCOMO II Berdasarkan Gaussian dan BCO

Rahmi Rizkiana Putri, Daniel Oranova Siahaan, Sarwosri Sarwosri


An accurate effort and cost estimation provides good management for software projects. Less accurate estimation will affect the management of the software project and cause the ineffectiveness of the project development process. The addition of cost driver, introduced by Barry Boehm in 2000, is used in this paper to provide better accuracy, because it has covered the entire section in the estimation. However, in this paper, the accuracy of effort and cost estimation by COCOMO II Fuzzy Gaussian method is still far from actual effort. Therefore, the accuracy can still be increased using Bee Colony Optimization (BCO), as seen in the MMRE loyal results. The value of parameter A and B on COCOMO II is also changed with the initial gradual of 0.01 to give optimal value on a certain gradual. Based on the result of the implementation, the error accuracy of effort estimation and software project cost is reduced by 38%, compared to previous research. In conclusion, the proposed method can increase the accuracy of effort and cost estimation.


Usaha, perkiraan biaya proyek perangkat lunak, Constructive Cost Model II, akurasi, Fuzzy Gaussian, Bee Colony Optimization.

Full Text:



A. C. Eberendu, “Software Project Cost Estimation : Issues , Problems and Possible Solutions,” Int. J. Eng. Sci. Invent., vol. 3, no. 6, pp. 38–43, 2014.

F. Soleimanian Gharehchopogh, I. Maleki, A. Kamalinia, and H. M. Zadeh, “Artificial bee colony based constructive cost model for software cost estimation,” J. Sci. Res. Dev., vol. 1, no. 2, pp. 44–51, 2014.

K. T. Le My, “Applying Teaching-Learning To Artificial Bee Colony for Parameter Optimization of Software Effort,” J. Eng. Sci. Technol., August, 2016.

F. S. Gharehchopogh and A. Pourali, “A new approach based on continuous genetic algorithm in software cost estimation,” J. Sci. Res. Dev., vol. 2, no. 4, pp. 87–94, 2015.

C. S. Reddy and K. Raju, “An Improved Fuzzy Approach for COCOMO ’ s Effort Estimation using Gaussian Membership Function,” J. Softw., vol. 4, no. 5, pp. 452–459, 2009.

T. N. Sharma, “Analysis of Software Cost Estimation using COCOMO II,” Int. J. Sci. Eng. Res., vol. 2, no. 6, pp. 1–5, 2011.

C. H. S. Reddy and K. Raju, “Improving the accuracy of effort

estimation through Fuzzy set combination of size and cost drivers,” WSEAS Trans. Comput., vol. 8, no. 6, pp. 926–936, 2009.

E. Stimation, “A Fuzzy Approach For Software Effort Estimation,” Int. J. Cybern. Informatics, vol. 2, no. 1, pp. 9–15, 2013.

C. S. Reddy and K. Raju, “Improving the accuracy of effort estimation through fuzzy set combination of size and cost drivers,” WSEAS Trans. Comput., vol. 8, no. 6, pp. 926–936, 2009.

S. Chalotra, S. K. Sehra, Y. S. Brar, and N. Kaur, “Tuning of COCOMO Model Parameters by using Bee Colony Optimization,” Indian J. Sci. Technol., vol. 8, no. July, 2015.

A. Malik, V. Pandey, and A. Kaushik, “An analysis of fuzzy approaches for COCOMO II,” Int. J. Intell. Syst. Appl., vol. 5, no. 5, pp. 68–75, 2013.

J. G. Borade and V. R. Khalkar, “Software Project Effort and Cost Estimation Techniques,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 8, pp. 730–739, 2013.

S. Waghmode and K. Kolhe, “A Novel Way of Cost Estimation in Software Project Development Based on Clustering Techniques,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 2, no. 4, pp. 3892–3899, 2014.

R. R. Putri, R. Sarno, D. Siahaan, A. S. Ahmadiyah, and S. Rochimah, “Accuracy Improvement of the Estimations Effort in Constructive Cost Model II Based on Logic Model of Fuzzy,” Adv. Sci. Lett., vol. 23, no. 3, pp. 2478–2480, 2017.

I. Attarzadeh and S. Ow, “Improving the accuracy of software cost estimation model based on a new fuzzy logic model,” World Appl. Sci. J. 2010.

S. Adhimantoro, “Mengetahui Tingkat Kematangan Buah Dengan Ultrasonik Menggunakan Logika Fuzzy,” JNTETI, vol. 3, no. 1, pp. 1–6, 2014.

T. K. G. Marappagounder, “An Efficient Software Cost Estimation Technique Using Fuzzy Logic With The Aid Of Optimization Algorithm,” Int. J. Innov. Comput. Inf. Control, vol. 11, pp. 587 – 597, 2015.

T. Davidov, D. Teodorov, and M. Selm, “Bee Colony Optimization Part I: the Algorithm Overview,” Yugosl. J. Oper. Res., vol. 25, no. 1, pp. 33–56, 2015.



  • There are currently no refbacks.

Copyright (c) 2017 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305