Metode Flyback pada Pembangkitan Tegangan Tinggi untuk Aplikasi Plasma Electrolytic Oxidation

Kumala Mahda Habsari, Wijono Wijono, D.J. Djoko H.S.


Flyback is one of high voltage generation methods using a low voltage source. This method has a simple circuit, which consists of two main components for generating the high voltage. In this study, flyback method is used to generate high voltage on plasma electrolytic oxidation (PEO) application. PEO is a process that combine electrochemical oxidation process and high voltage spark. This application needs high voltage to produce plasma. The plasma is used to form a new surface coating on metal. Flyback circuit is succesfully simulated on LTSpice IV. Voltage value and waveform on simulation has been observed and compared with the real one. The measured and observed part is IGB gate, output voltage of transformer before diode, and load voltage after diode. Flyback effect and waveform on simulation has the similiar result with the real one. A 10 volt input voltage can produce output voltage on the average of 1 kilovolt. Therefore, flyback simulation is able to represent flyback ability on real circuit for generating high voltage which can be used on high voltage generation for PEO application.


flyback, tegangan tinggi, plasma, plasma elecrolytic oxidation, PEO.

Full Text:



N. Barsoum dan G. I. Stanley, “Design of High Voltage Low Power Supply Device,” Universal Journal of Electrical & Electronic Engineering, vol. 3, no. 1, pp. 6–12, 2015.

M. Aliofkhazraei and A. S. Rouhaghdam, Fabrication of nanostructures by plasma electrolysis, Weinheim, Germany: Wiley-VCH Verlag&Co., 2010.

L. Pezzato, K. Brunelli, S. Gross, M. Magrini, and M. Dabal, “Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys,” J. Appl. Electrochem., vol. 44, no. 7, pp. 867–879, 2014.

C. S. Dunleavy, I. O. Golosnoy, J. A. Curran, and T. W. Clyne, “Characterisation of discharge events during plasma electrolytic oxidation,” Surf. Coatings Technol., vol. 203, no. 22, pp. 3410–3419, 2009.

A. Fatkullin, E. V. Parfenov, and A. Yerokhin, “Equivalent Circuit Modelling for Pulsed Bipolar Plasma Electrolytic Oxidation Process,” Int. J. Inf. Electron. Eng., vol. 5, no. 1, pp. 3–7, 2015.

A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surf. Coatings Technol., vol. 122, no. 2–3, pp. 73–93, 1999.

V. Dehnavi, B. L. Luan, D. W. Shoesmith, X. Y. Liu, and S. Rohani, “Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior,” Surf. Coatings Technol., vol. 226, pp. 100–107, 2013.

K. C. Wu, Pulse Width Modulated DC/DC Converters, Dordrecht: Springer Science Business Media ®. Chapman & Hall in 1997, 1997.

P. Davari, F. Zare, A. Ghosh, and H. Akiyama, “High-voltage modular power supply using parallel and series configurations of flyback converter for pulsed power applications,” IEEE Trans. Plasma Sci., vol. 40, no. 10 PART 1, pp. 2578–2587, 2012.

J. R. Dreher, F. Marangoni, J. L. R. Ortiz, M. L. S. Martins, and H. T. Câmara, “Integrated DC / DC Converters for High Step-up Voltage Gain Applications,” 3rd IEEE International Symposium on Power Electronics for distributed Generation system (PEDG), 2012, hal. 1–8.



  • There are currently no refbacks.

Copyright (c) 2017 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305