Klasifikasi Data pada Sistem Penjurusan dengan Preferensi Standar Simple Additive Weighting (PS-SAW)

Basri Basri, Muhammad Assidiq

Abstract


Academic potential of students becomes the main success factor in learning activity. Academic potential analysis with various types of variables requires reliable computational classification techniques. The main objective of this study is to implement the Simple Additive Weighting formula with Standard Preference approach (PS-SAW) as a new technique in classification field. In this study, PS-SAW was implemented based on research need and research objectives. The PS-SAW method was applied by finding average value of preferences from the best data classification as a standard preference, and further becomes the basis for determining the classification of new data. The results showed that the implementation of PS-SAW in data test was more selective than the basic SAW with selectivity about 21,02%, and early recommendation by 85,99%. This research can be a reference for building major system and can be implemented in general application classification system.

Keywords


Preferensi Standar, PS-SAW, Sistem Klasifikasi, Sistem Penjurusan.

Full Text:

PDF

References


Indrayani, E., “Pengelolaan Sistem Informasi Akademik Perguruan Tinggi Berbasis Teknologi Informasi dan Komunikasi (TIK),” Jurnal Penelitian Pendidikan vol. 12, no. 1, pp.51-67, 2011.

A. M. García-Vico, P. González, M. J. del Jesus and C. J. Carmona, "A first approach to handle fuzzy emerging patterns mining on big data problems: The EvAEFP-spark algorithm," 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1-6, Naples, Italy, 2017.

Prasetyo, E., Nugroho, L. E., & Aji, M. N., “Perancangan Data Warehouse Sistem Informasi Eksekutif untuk Data Akademik Program Studi,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 1, no. 3, 2012.

Basri, “Algoritma Naïve Bayes Classifier (NBC) Sebagai Sistem Penunjang Keputusan Pemilihan Konsentrasi Keahlian pada Sebuah Program Studi,” Konferensi Nasional Ilmu Komputer (KONIK) 2014, vol. 2, pp.26-29, 2014.

Hartono, A. A., “Sistem Pendukung Keputusan pada Penjurusan Siswa Terkendala dengan metode Analytic Hierarchy Process,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 3, no. 3, 2014.

Mursid Y., “Perbedaan Minat dan Prestasi Belajar Siswa Pada Mata Diklat Mengoperasikan Sistem Pengendali Elektronik Dengan Menggunakan Software Tutorial PLC Siswa Kelas XI SMK Negeri 2 Pengasih,” [online]. http://eprints.uny.ac.id/9606/1/ diakses pada 27 Maret 2017.

McLeod, Jr.R. dan G.P. Schell, Management Information System. 10th ed., Pearson Education, Inc., 2017.

Kencana, Andrew Yova, and Setia Astuti., "Metode Klasifikasi dengan Algoritma Naïve Bayes untuk rekomendasi Penjurusan SMA Terang Bangsa," Techno. Com, vol. 15, no. 3, pp. 195-200, 2016.

Pawestri, D., & Sihwi, S. W., “Perbandingan Penggunaan Metode AHP dan SAW untuk Sistem Pendukung Keputusan Pemilihan Paket Layanan Internet,” ITSmart: Jurnal Teknologi dan Informasi, 1(2), 74-81, 2016.

J. Kittur, "Optimal generation evaluation using SAW, WP, AHP and PROMETHEE multi - criteria decision making techniques," 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 304-309, Kollam, 2015.

Kusumadewi, S. Hatati, S. Harjoko, A. dan Wardoyo, R., Fuzzy Multi-Attribute Decision Making (FUZZY MADM), Yogyakarta, Graha Ilmu, 2006.

A. Pranolo and S. M. Widyastuti, "Simple additive weighting method on intelligent agent for urban forest health monitoring," 2014 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), pp. 132-135, Bandung, 2014.

A. R. Afshari, R. Yusuff and A. R. Derayatifar, "Project manager selection by using Fuzzy Simple Additive Weighting method," 2012 International Conference on Innovation Management and Technology Research, pp. 412-416, Malacca, 2012.

Asmara, A. G. A. P. R., “Implementasi Metode Simple Additive Weighting (SAW) Dalam Memprediksi Calon Mahasiswa Dropout STMIK STIKOM Bali,” Jurnal Sistem dan Informatika, vol. 11, no. 1, 2017.

Sugiyani, Y., “Sistem Pengambilan Keputusan Penentuan Lokasi Tempat Pembuangan Akhir (TPA) Sampah Menggunakan Metode Simple Addictive Weighting (SAW),” JSiI (Journal Sistem Informasi), vol. 3, 2017.

Rusdiansyah, R., “Analisis Keputusan Menentukan Jurusan Pada Sekolah Menengah Kejuruan Dengan Metode Simple Additive Weighting,” Jurnal Techno Nusa Mandiri, vol. 14, no. 1, pp.49-58, 2017.

Tzoumas, K., Deshpande, A., & Jensen, C. S., “Efficiently adapting graphical models for selectivity estimation,” The VLDB Journal, vol. 22, no. 1, pp. 3-27, 2013.

Mohammed, S., Barradah, A. F., & El-Alfy, E. S. M., “Selectivity estimation of extended XML query tree patterns based on prime number labeling and synopsis modeling,” Simulation Modelling Practice and Theory, vol. 64, pp. 30-42, 2016.




DOI: http://dx.doi.org/10.22146/jnteti.v6i4.351

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id