Pendeteksi Sinyal Jual/Beli Saham dengan Fuzzy Rule-Based Evidential Reasoning dan C-means Clustering

M. Lutfi Sulthon A.S., Agung B. Prasetijo, Maman Somantri


Stocks are securities indicating the share of ownership of a company. In stock market, most of traded stocks fluctuate in price at all times and traders take an advantage for taking profit. Traders often use technical analysis to determine the trend of stock price movements. The problem is on how traders take positions (buying/selling stocks) with minimal trading decision so they can maximize profits. Fuzzy rule-based evidential reasoning approach can map the conditions of stock movements. Clustering can help the mapping conducted with a high degree of equality with each other. One of the clustering methods is fuzzy C-means clustering. This method is used to determine the number of membership functions for each attribute. To increase profit/Return of Investment (ROI), verification of output decision is required to analyze stock trends when placing buy or sell. From the results experimented, an ROI of 83.80% profit is obtained.


Logika fuzzy, Rule Base Evidential Reasoning, Decission Support System, saham, Fuzzy C-Means Clustering, Expert System

Full Text:



P. Situmorang, Pengantar Pasar Modal, Jakarta: Mitra Wacana Media, 2008.

M. Fikry, “Decision Support System (DSS) Determining Credit Customer pada PT. Bank Rakyat Indonesia (Persero) Tbk.,” Jurnal Edik Informatika, Vol. 1, hal. 44–51, 2014.

C. Lubis, E. Sutedjo, dan B. Setiadi, “Prediksi Harga Saham dengan Menggunakan Algoritma Hybrid Neural Network,” Seminar Nasional Aplikasi Teknologi Informasi 2005 (SNATI), 2005, hal. 17–19.

H. Yasin, A. Prahutama, dan T. W. Utami, “Prediksi Harga Saham Menggunakan Support Vector Regression dengan Algoritma Grid Search,” Media Statistika, Vol. 7, No. 1, hal. 29–35, Jun. 2014.

L. Dymova, P. Sevastjanov, dan K. Kaczmarek, “A Forex Trading Expert System Based on a New Approach to the Rule-Base Evidential Reasoning,” Expert System with Applications, Vol. 51, hal. 1–13, 2016.

E.T. Luthfi, “Fuzzy C-Means untuk Clustering Data (Studi Kasus: Data Performance Mengajar Dosen),” Seminar Nasional Teknologi 2007 (SNT 2007), 2007, hal. 1–7.

C.D. Kirkpatrick dan J.R. Dahlquist, Why Technical Analysis? Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.

(2016) Relative Strength Index (RSI), [Online],, tanggal akses: 12 Feb. 2018.

(2016) MACD (Moving Average Convergence/Divergence Oscillator), [Online], technical_indicators:moving_average_convergence_divergence_macd, tanggal akses: 16 Feb. 2018.

(2016) Commodity Channel Index (CCI), [Online],, tanggal akses: 16 Feb. 2018.

(1999) Stochastic Oscillator, [Online]:, tanggal akses: 16 Feb. 2018.

(2016) Bollinger Bands, [Online], [Accessed: 16-Feb-2018]., “Parabolic SAR,” 2007. [Online]. Available: ParabolicSAR.html. [Accessed: 16-Feb-2018].

E. Turban dan L.E. Frenzel, Expert System and Applied Artificial Intelligence. New York, USA: Macmillan, 1992.

S. Kusumadewi, Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta, Indonesia: Graha Ilmu, 2003.

S. Kusumadewi, S. Hartatik, A. Harjoko, dan R. Wardoyo, Fuzzy Multi Atribute Decision Making. Yogyakarta, Indonesia: Graha Ilmu, 2006.

J.B. Yang, J. Liu, J. Wang, H.S. Sii, dan H.W. Wang, “Belief Rule-Base Inference Methodology Using the Evidential Reasoning Approach - RIMER,” IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, Vol. 36, No. 2, hal. 266–285, 2006.

W. Nurwidodo dan M. Hariadi, “Sistem Pendukung Keputusan Multidimensi Menggunakan K-Means Clustering Berbasis Mahalanobis Distance,” Prosiding Seminar Nasional Manajemen Teknologi XVII, 2013, hal. 1–11.



  • There are currently no refbacks.

Copyright (c) 2018 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305