Modifikasi Fitur dengan Differential Asymmetry untuk Meningkatkan Akurasi Klasifikasi EEG Motor Imagery

Yulianto Tejo Putranto, Tri Arief Sardjono, Mochamad Hariadi, Mauridhi Hery Purnomo

Abstract


Teknologi Brain-Computer Interface (BCI) memungkinkan orang dengan keterbatasan kemampuan motorik berinteraksi dengan lingkungannya. Sinyal EEG yang berhubungan dengan keadaan membayangkan menggerakkan digunakan sebagai sinyal pengendali. Dalam makalah ini, sinyal EEG motor imagery dari data 2-kelas diolah menjadi fitur-fitur dan diklasifikasikan menurut kelasnya. Sebagai fitur digunakan power dan standar deviasi sinyal EEG, juga rata-rata dari nilai mutlak koefisien wavelet, dan rata-rata power dari koefisien wavelet. Tujuan dari makalah ini adalah menerapkan differential asymmetry dari fitur-fitur tersebut sebagai fitur baru untuk meningkatkan akurasi sistem. Sebagai pengklasifikasi digunakan SVM, k-NN, dan Tree. Hasil eksperimen menunjukkan bahwa untuk dataset I, penggunaan fitur differential asymmetry mampu meningkatkan akurasi hingga 47,80%, dari semula 52,20% menjadi 100%, dengan Tree sebagai pengklasifikasi. Sedangkan dataset II mampu meningkatkan akurasi sebesar 8,46%, dari semula 54,42% menjadi 62,48%.

Keywords


Brain-Computer Interface; EEG Motor Imagery; Differential Asymmetry; SVM; k-NN; Tree

Full Text:

PDF

References


L. Bougrain, M. Clerc, dan F. Lotte, Ed., Brain-Computer Interfaces. 1: Foundations and Methods, First published. London, UK: ISTE Ltd, 2016.

M. Bentlemsan, E.-T. Zemouri, D. Bouchaffra, B. Yahya-Zoubir, dan K. Ferroudji, “Random Forest and Filter Bank Common Spatial Patterns for EEG-Based Motor Imagery Classification,” 2014 Fifth International Conference on Intelligent Systems, Modelling and Simulation, 2014, hal. 235–238.

S.L. Wu, Y.T. Liu, T.Y. Hsieh, Y.Y. Lin, C.Y. Chen, C.H. Chuang, dan C.T. Lin, “Fuzzy Integral With Particle Swarm Optimization for a Motor-Imagery-Based Brain–Computer Interface,” IEEE Trans. Fuzzy Syst., Vol. 25, No. 1, hal. 21–28, Feb. 2017.

N. Tomida, T. Tanaka, S. Ono, M. Yamagishi, dan H. Higashi, “Active Data Selection for Motor Imagery EEG Classification,” IEEE Trans. Biomed. Eng., Vol. 62, No. 2, hal. 458–467, Feb. 2015.

S.-M. Park, X. Yu, P. Chum, W.-Y. Lee, dan K.-B. Sim, “Symmetrical Feature for Interpreting Motor Imagery EEG Signals in the Brain–Computer Interface,” Opt. - Int. J. Light Electron Opt., Vol. 129, hal. 163–171, Jan. 2017.

W.-Y. Hsu, “Motor Imagery Electroencephalogram Analysis Using Adaptive Neural-Fuzzy Classification,” Int. J. Fuzzy Syst., Vol. 16, No. 1, hal. 111-120, 2014.

M. Li, X. Luo, dan J. Yang, “Extracting the Nonlinear Features of Motor Imagery EEG Using Parametric t-SNE,” Neurocomputing, Vol. 218, hal. 371–381, Des. 2016.

S.U. Kumar dan H.H. Inbarani, “PSO-Based Feature Selection and Neighborhood Rough Set-Based Classification for BCI Multiclass Motor Imagery Task,” Neural Comput. Appl., Vol. 28, No. 11, hal. 3239–3258, Nov. 2017.

A. Subasi, A. Alkan, E. Koklukaya, dan M. K. Kiymik, “Wavelet Neural Network Classification of EEG Signals by Using AR Model with MLE Preprocessing,” Neural Netw., Vol. 18, No. 7, hal. 985–997, Sep. 2005.

H. Baali, A. Khorshidtalab, M. Mesbah, dan M.J.E. Salami, “A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification,” IEEE J. Transl. Eng. Health Med., Vol. 3, hal. 1–8, 2015.

S. Theodoridis dan K. Koutroumbas, Pattern Recognition, 4th. ed. Amsterdam, Netherlands: Elsevier Acad. Press, 2009.

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, dan B. Arnaldi, “A Review of Classification Algorithms for EEG-Based Brain–Computer Interfaces,” J. Neural Eng., Vol. 4, No. 2, hal. R1-R13, 2007.

Q. Zhao, T.M. Rutkowski, L. Zhang, dan A. Cichocki, “Generalized Optimal Spatial Filtering Using a Kernel Approach with Application to EEG Classification,” Cogn. Neurodyn., Vol. 4, No. 4, hal. 355–358, Des. 2010.

S.K. Bashar, A.R. Hassan, dan M.I.H. Bhuiyan, "Identification of Motor Imagery Movements from EEG Signals Using Dual Tree Complex Wavelet Transform," 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2015, hal. 290-296.

Z. Tang, C. Li, dan S. Sun, “Single-Trial EEG Classification of Motor Imagery Using Deep Convolutional Neural Networks,” Opt. - Int. J. Light Electron Opt., Vol. 130, hal. 11–18, Feb. 2017.

M. Tangermann, K-R.Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K. Miller, G. Mueller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, dan B. Blankertz, “Review of the BCI Competition IV,” Front. Neurosci., Vol. 6, hal 55-85, 2012.

S. Sanei dan J.A. Chambers, EEG signal processing, Reprinted with corr. Chichester, UK: Wiley, 2009.

L.F. Nicolas-Alonso dan J. Gomez-Gil, “Brain Computer Interfaces, a Review,” Sensors, Vol. 12, No. 12, hal. 1211–1279, Jan. 2012.

Z. Tang, S. Sun, S. Zhang, Y. Chen, C. Li, dan S. Chen, “A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control,” Sensors, Vol. 16, No. 12, hal. 1-14, Des. 2016.

G.K. Verma dan U.S. Tiwary, “Multimodal Fusion Framework: A Multiresolution Approach for Emotion Classification and Recognition from Physiological Signals,” NeuroImage, Vol. 102, hal. 162–172, Nov. 2014.

M.K.M. Rahman dan M.A.M. Joadder, “A Review on the Components of EEG-based Motor Imagery Classification with Quantitative Comparison,” Appl. Theory Comput. Technol., Vol. 2, No. 2, hal. 1, Mar. 2017.

R. Darmakusuma, A.S. Prihatmanto, A. Indayanto, dan T.L. Mengko, “Deteksi Intensi Pergerakan Jari Menggunakan Metode Power Spectral Density dengan Stimuus Visual,” J. Nas. Tek. Elektro dan Teknol. Inf. JNTETI, Vol. 4, No. 2, hal. 125-129. 2015.

(2014) Brain Science Institute RIKEN Website. “EEG Datasets from BCI Experiment,” [Online] http://www.bsp.brain.riken.jp/~qibin/ homepage/Datasets.html, tanggal akses: 8 Mar. 2016.

(2008) BCI Competition Website. “Data sets 2a”, [Online] http://www.bbci.de/competition/iv/#dataset2a, tanggal akses: 22 Agt. 2017.

A. Rizal, “Perbandingan Skema Dekomposisi Paket Wavelet untuk Pengenalan Sinyal EKG,” J. Nas. Tek. Elektro Dan Teknol. Inf. JNTETI, Vol. 4, No. 2, hal 80-86, 2015.

Y.T. Putranto, M. Hariadi, T.A. Sardjono, dan M.H. Purnomo, “Enhancement of EEG Signals Classification for Imaginary Movement By Detailing Discriminant Parameters,” 2016 IEEE Region 10 Conference (TENCON), 2016, hal. 47–50.

R. Jenke, A. Peer, dan M. Buss, “Feature Extraction and Selection for Emotion Recognition from EEG,” IEEE Trans. Affect. Comput., Vol. 5, No. 3, hal. 327–339, Jul. 2014.




DOI: http://dx.doi.org/10.22146/jnteti.v8i1.493

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id