Sistem Klasifikasi Kondisi Pita Suara dengan Metode Decision Tree

Hertiana Bethaningtyas, Suwandi Suwandi, Chintia Dara Anggraini

Abstract


This paper presents the study of pathological vocal cords classification using digital image processing. There are six classifications of vocal cords, including the normal vocal cords condition. Before the classification process, image vocal cords are extracted to obtain the characteristics or information of objects in the image. In this study, shape measurement is used to extract the glottis contour of the vocal cords that can be analyzed and classified. The process of measuring the glottis contour of vocal cords requires the vocal image in the binary image. To get the binary image, this study uses a method to automatically obtain the glottis area segmentation without user initialization. The segmentation is mainly based on active contour, which is Chan-Vese algorithm. The result of this study can optimize glottis contour extraction and results of the classification training process using Decision Tree algorithm obtains an accuracy of 98.3%.

Keywords


Pita Suara; Pengukuran Bentuk; Algoritme Chan-Vese; Algoritme Pohon Keputusan

Full Text:

PDF

References


A. Méndez, B. Garcia, J. Vicente, I. Ruiz, dan K. Sanchez, “Objective Model of Vocal Folds, Based on Glottal Closure, Opening Angles and Morphologic Criteria,” 2007 9th Int. Symp. Signal Process. its Appl. (ISSPA 2007), 2007, hal. 1-4.

A. Mendez dan B. Garcia, “Vocal Folds Stroboscopic Image Processing for Otolaryngology,” in Med. Imaging Clin. Pract., Rijeka, Croatia: IntechOpen, 2013.

A. Méndez, B. García, I. Ruiz, dan I. Iturricha, “Glottal Area Segmentation Without Initialization Using Gabor Filters,” Proc. 8th IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT) 2008, 2008, hal. 18–22.

C.F.J. Kuo, J. Kuo, S.W. Hsiao, C.L. Lee, J.C. Lee, dan B.H. Ke, “Automatic and Quantitative Measurement of Laryngeal Video Stroboscopic Images,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., Vol. 231, No. 1, hal. 48–57, 2017.

B.G.L. Pubiyangga, “Identifikasi Kondisi Pita Suara untuk Deteksi Kelainan Pita Suara dengan Metode Moore Neighbor Tracing,” Skripsi, Universitas Telkom, Bandung, Indonesia, 2016.

J.M. Gutierrez-Arriola, V. Osma-Ruiz, N. Seenz-Lechon, J.I. Godino-Llorente, R. Fraile, dan J.D. Arias-Londono, “Objective Measurements to Evaluate Glottal Space Segmentation from Laryngeal Images,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2012, hal. 5396–5399.

A.M. Zorrilla dan B.G. Zapirain, “Vocal Folds Paralysis Study Using a Pre-Processing Stage of Gabor Filtering and Chan-Vese Segmentation,” 2010 IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT 2010), 2010, hal. 360–365.

C.F.J. Kuo, P.C. Wang, Y.H. Chu, H.W. Wang, dan C.Y. Lai, “Using Image Processing Technology Combined with Decision Tree Algorithm in Laryngeal Video Stroboscope Automatic Identification of Common Vocal Fold Diseases,” Comput. Methods Programs Biomed., Vol. 112, No. 1, hal. 228–236, 2013.

A. Quriba dan M. Darweesh, “Voice Changes and Laryngo-Video-Stroboscopic Findings in Patients with Vocal Fold Polyps and Cysts,” Egypt. J. Otolaryngol., Vol. 31, No. 1, hal. 47-53, 2015.

R. Kasivisvanathan dan A. McGlennan, “Vocal Cord Granuloma and Voice Change Following Tracheal Intubation in an Actor,” J. Laryngol. Voice, Vol. 3, No. 1, hal. 32-33, 2013.

P.L. Harshad, V. Pujari, N.M. Channappa, dan T.C. Anandaswamy, “Anesthesia Management in a Child With Laryngeal Papilloma Causing Near Complete Airway Obstruction,” Saudi J. Anaesth., Vol. 9, No. 1, hal. 86–88, Jan. 2015.

B. Vachha, M. Cunnane, P. Mallur, dan G. Moonis, “Losing Your Voice: Etiologies and Imaging Features of Vocal Fold Paralysis,” J. Clin. Imaging Sci., Vol. 3, No. 1, hal. 15, 2013.

(2017) “Larynx anatomy” [Online], http://www.edoctoronline.com/ medical-atlas.asp?c=4&id=21690, tanggal akses: 23-Dec-2018.

R. Munir, “Bab 11_Citra Biner,” in Pengolahan Citra Digital, Bandung, Indonesia: Informatika, 2004, hal. 169.

T.F. Chan dan L.A. Vese, “Active Contours Without Edges,” IEEE Trans. Image Process., Vol. 10, No. 2, hal. 266–277, 2001.

A.M. Zorrilla, N. El-Zehiry, B.G. Zapirain, and A. Elmaghraby, “Pathological Vocal Folds Features Extraction Using a Modified Active Contour Segmentation,” Majlesi Journal of Electrical Engineering, Vol. 4, No. 4, hal. 55-61, 2010.

A.M. Zorrilla, N. El-Zehiry, B.G. Zapirain, dan A. Elmaghraby, “Pathological Vocal Folds Diagnosis Using Modified Active Contour Models,” 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010, hal. 504–507.

(2017) “Measure Properties of Image Regions - MATLAB Regionprops.” [Online], https://www.mathworks.com/help/images/ref/regionprops.html, tanggal akses: 23-Dec-2018.

M. Steinbach, P.-N. Tan, dan V. Kumar, "Classification: Basic Concepts, Decision Trees, and Model Evaluation", in Introduction to Data Mining, London, UK: Pearson, 2005.




DOI: http://dx.doi.org/10.22146/jnteti.v8i2.506

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Nasional Teknik Elektro dan Teknologi Informasi

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id