Integrasi Gradient Boosted Trees dengan SMOTE dan Bagging untuk Deteksi Kelulusan Mahasiswa

Achmad Bisri, Rinna Rachmatika

Abstract


Education has an important role in life. Pamulang University is a university which provides education at affordable cost. However, based on student academic performance data, there is imbalance in class between the number of students who graduate on time and students who can’t graduate on time, on various study programs. In this paper, an implementation of SMOTE and bagging techniques was conducted on the Gradient Boosted Trees (GBT) classification method for handling the class imbalance problem. The proposed method is able to provide significant results with an accuracy of 80.57% and an AUC of 0.858, in the category of good classification.

Keywords


Gradient Boosted Trees; SMOTE; Bagging; Deteksi Kelulusan; Ketidakseimbangan Kelas

Full Text:

PDF

References


A. Bisri dan R.S. Wahono, “Penerapan Adaboost untuk Penyelesaian Ketidakseimbangan Kelas pada Penentuan Kelulusan Mahasiswa dengan Metode Decision Tree,” J. Intell. Syst., Vol. 1, No. 1, hal. 27–32, Feb. 2015.

A. Nurhuda dan D. Rosita, “Prediction Student Graduation on Time Using Artificial Neural Network on Data Mining Students STMIK Widya Cipta Dharma Samarinda,” Proc. of the 2017 Int. Conf. on Ecommerce, E-Business and E-Government, hal. 86–89, 2017.

A. Saifudin, “Metode Data Mining untuk Seleksi Calon Mahasiswa pada Penerimaan Mahasiswa Baru di Universitas Pamulang,” Jurnal Teknologi, Vol. 10, No. 1, hal. 25–36, 2018.

A. Ali, S.M. Shamsuddin, dan A.L. Ralescu, “Classification with Class Imbalance Problem: A Review,” Int. J. Adv. Soft Comput. Its Appl., Vol. 7, No. 3, hal. 176–204, 2015.

N.V. Chawla, D.A. Cieslak, L.O. Hall, dan A. Joshi, “Automatically Countering Imbalance and Its Empirical Relationship to Cost,” Data Min. Knowl. Discov., Vol. 17, No. 2, hal. 225–252, 2008.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, dan F. Herrera, “A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,” IEEE Trans. Syst. Man, Cybern. Part C (App. and Rev.), Vol. 42, No. 4, hal. 463–484, Jul. 2012.

N.V. Chawla, K.W. Bowyer, dan L.O. Hall, “SMOTE: Synthetic

Minority Over-sampling Technique Nitesh,” J. Artif. Intell. Res., Vol. 2009, No. Sept. 28, hal. 321–357, 2006.

J.H. Friedman, “Stochastic Gradient Boosting,” Comput. Stat. Data Anal., Vol. 38, No. 4, hal. 367–378, 2002.

B.W. Yap, K. Abd-Rani, H.A. Abd-Rahman, S. Fong, Z. Khairudin, dan N.N. Abdullah, “An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets,” Proc. of the First Int. Conf. on Advanced Data and Information Engineering, 2014, hal. 13–22.

J.H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Ann. Stat., Vol. 29, No. 5, hal. 1189–1232, 2014.

I.H. Witten, E. Frank, M.A. Hall, dan C.J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, 4th Ed. San Fransisco, USA: Morgan Kaufmann, 2016.

F. Gorunescu, Data Mining Concepts, Models and Techniques, Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2011.




DOI: http://dx.doi.org/10.22146/jnteti.v8i4.529

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika No 2. Kampus UGM Yogyakarta 55281
+62 274 552305
jnteti@ugm.ac.id